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ABSTRACT: Recent advances in machine learning have
made significant contributions to drug discovery. Deep neural
networks in particular have been demonstrated to provide
significant boosts in predictive power when inferring the
properties and activities of small-molecule compounds
(Ma, J. et al. J. Chem. Inf. Model. 2015, 55, 263−274).
However, the applicability of these techniques has been limited
by the requirement for large amounts of training data. In this
work, we demonstrate how one-shot learning can be used
to significantly lower the amounts of data required to make
meaningful predictions in drug discovery applications. We introduce a new architecture, the iterative refinement long short-term
memory, that, when combined with graph convolutional neural networks, significantly improves learning of meaningful distance
metrics over small-molecules. We open source all models introduced in this work as part of DeepChem, an open-source
framework for deep-learning in drug discovery (Ramsundar, B. deepchem.io. https://github.com/deepchem/deepchem, 2016).

■ INTRODUCTION

The lead optimization step of drug discovery is fundamentally
a low-data problem. When biological studies yield evidence
that a particular molecule can modulate essential pathways to
achieve therapeutic activity, the discovered molecule often fails
as a potential drug for a number of reasons including toxicity,
low activity, and low solubility.3 The central problem of small-
molecule based drug-discovery is to optimize the candidate
molecule by finding analogue molecules with increased
pharmaceutical activity and reduced risks to the patient.
Yet, with only a small amount of biological data available on
the candidate and related molecules, it is challenging to form
accurate predictions for novel compounds.
In the past few years, the field of machine-learning has pro-

duced several pivotal advances that address complex problems.
Deep neural networks have solved challenging problems in
visual perception,4 speech-recognition,5 language translation,6

and game-playing.7 These techniques leverage the use of multi-
layer neural network architectures as powerful and flexible
function approximators. This capability of deep neural networks
is underpinned by their ability to learn sophisticated representa-
tions of their input given large amounts of data.
These advances in deep-learning have inspired novel

approaches for better understanding chemistry. For example,
in 2012, Merck sponsored a Kaggle competition for improving
the accuracy of molecular property prediction. The winning
team used multitask deep networks and achieved a 15% improve-
ment in relative accuracy over a random forest baseline.8

Following this work, many groups demonstrated that massively
multitask networks can provide significant boosts in the
predictive power of deep-learning models for property
prediction.1,9,10 In parallel, other groups developed sophisticated
deep-architectures for processing and extracting features from

molecular structures.11 Graph-convolutional architectures12,13

in particular process small-molecules as undirected graphs and
build up features using learnable convolution layers. In contrast
to older small-molecule featurizing algorithms, such as circular
fingerprints,14 these new graph convolutional feature extracting
architectures are learnable, meaning they can be modified to
improve performance.
The practical effect of these innovations in drug discovery

has been limited as most of the aforementioned deep-learning
frameworks require large amounts of data. For example,
massively multitask networks have so far been trained with
millions of data points.9 This is in stark contrast to the state
of current drug discovery pipelines, which often struggle to
characterize even a few dozen compounds. Recent work
has demonstrated that standard machine-learning techniques
such as random forests and simple deep-networks are capable
of learning meaningful chemical information from only a few
hundred compounds,15 but even a hundred compounds is often
too resource intensive for standard drug discovery campaigns.
Other recent advances in machine learning have demon-

strated that in some circumstances, nontrivial predictors may be
learned from only a few data points.16−18 These methods work
by using related data to learn a meaningful distance metric over
the space of possible inputs. This sophisticated metric is used to
compare new data points to the limited available data and
subsequently predict properties of these new data points. More
broadly, these techniques are known as “one-shot learning”
methods. For example, matching-networks18 learn a distance-
metric upon images which they use to achieve impressive
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near-human accuracies on the one-shot character-recognition
Omniglot data set.16

In this work, we mathematically adapt the standard one-shot
learning paradigm to the drug discovery problem. Standard
one-shot learning focuses on recognizing new-classes (say
recognizing a giraffe given only one example). In drug-
discovery, the challenge is rather to predict the behavior of a
molecule in a new experimental system.
We introduce a new deep-learning architecture, the iterative

refinement long short-term memory (LSTM), a modification of
the matching-networks architecture and the residual convolu-
tional network.19 This architecture allows for the learning
of sophisticated metrics which can trade information between
evidence and query molecules. We demonstrate that this architec-
ture offers significant boosts in predictive power for a variety of
problems meaningful for low-data drug discovery.
Furthermore, we take a strong open-source approach in

this work. Every primitive introduced in this paper is open-
sourced as part of the DeepChem2 library for open-source drug
discovery. In particular we provide high-quality Tensorflow20

implementations of graph-convolutional primitives along
with implementations of our one-shot learning models. The
scripts used to generate all numbers in this paper are similarly
open sourced, along with all data sets. Interested parties can
reproduce all results claimed in this work with relative ease.

■ METHODS
Figure 1 provides a high-level schematic of our architecture for
one-shot learning in drug discovery. The remainder of this
section will expand on the subcomponents that comprise such
an architecture and introduce our proposed iterative refinement
LSTM module.
Mathematical Formalism. In this paper, we consider the

situation in which one has multiple binary learning tasks. Some
proportion of these tasks are reserved for training a one-shot
learning model. The remaining tasks are those with too little data
for standard machine-learning models to learn an effective classifier
predicting the outcomes for these tasks (active/inactive correspond
respectively to positive/negative examples for the binary
classifier). The goal is to harness the information available in
the training tasks to create strong classifiers for the test systems.

Mathematically, we have T tasks, each associated with a data
set, S = {(xi,yi)}i = 1

m , yi ∈ {0,1} (here m = |S| is the number of
data points in S). In our setting, each task typically corresponds
to an experimental assay. The data points x are compounds
tested in the experimental assay, while the labels y are binary
experimental outcomes for the experiment (e.g., active/inactive).
The learning challenge is learning to predict the experimental
outcomes for new compounds tested against this assay.
We refer to the collection of available data points for a given

task as a “support” set. The goal is to learn a function h,
parametrized upon choice of support S that predicts the
probability of any query x being active in the same system.
Formally, →h x( ): [0, 1]S , where is the chemical space of
small-molecules. If h is specified with a neural network, fully
differentiable with respect to x and S, then h can be trained end-
to-end with gradient descent.

One-Shot Learning. In this section, we briefly review
previously proposed techniques for one-shot learning and
then introduce our new architecture for one-shot learning.
We closely follow notation introduced in previous work18 to
lower notational burden for readers.

Review of Prior One-Shot Techniques. Deep one-shot
learning systems17,18 use convolutional layers to encode images
into continuous vectors. In the simplest one-shot learning
formalism these continuous vectors are then fed into a simple
nearest-neighbor classifier that labels new examples by distance-
weighted combination of support set labels. Let a(x, xi) denote
some weighting function for query example x and support set
element xi with associated label yi. Then the label hS(x) for
query compound x can be defined as

∑=
=

h x a x x y( ) ( , )S
i

m

i i
1

The function a is called an attention mechanism in previous
work.18 Mathematically, an attention mechanism is a non-
negative function a(x,xi), with ∑i = 1

m a(x,xi) = 1, that forms a
probability distribution over the support set. The purpose of
the attention distribution a(x,·) is to reflect the model’s
reasoning about the relationship between examples in support
S and the query x. The final prediction of the task’s output

Figure 1. Schematic of Network Architecture for one-shot learning in drug discovery.
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for x can then be interpreted as the expected value of the yi’s
under the attention distribution.
The attention mechanism a depends on two embedding

functions →f R: p and →g R: p which embed input
examples (in small molecule space) into a continuous
representation space. In past work, both f and g are standard
convolutional networks, while in ours, f and g are graph-
convolutional networks. The similarities between the “embed-
ded” vectors f(x) and {g(xi)} are computed using a similarity
measure k(·,·). For example, k could be the cosine-distance
between two vectors. Given a choice of similarity measure, a
simple attention mechanism a can be defined by normalizing
the similarity values

=
∑ =

a x x
k f x g x

k f x g x
( , )

( ( ), ( ))
( ( ), ( ))i

i

j
m

j1

Note that a(x,xi) is large when f(x) is closer to g(xi) under
metric k compared to the other g(xj)’s. This formulation of
one-shot learning has been referred to as a Siamese one-shot
learning method.21 If f and g are circular fingerprints,14 and k is
the Tanimoto distance, notice that this formula matches
standard chemoinformatic similarity methods.
The simple one-shot learning formulation introduced thus far

uses independent embeddings f(x) and g(xi) with only the
distance metric k linking the information from the two feature
embeddings. As a result, the feature map f(x) is formed without
any context about data available in support S = {x1, ... c, xm}.
The previously introduced matching-network architecture18

addresses this problem by developing full context embeddings,
in which embeddings f(x) = f(x|S) and g(xi) = g(xi|S) are
computed using both x and S. Full context embeddings allow
the embeddings for x and xi’s to affect one another. Empirically,
this modification allows for stronger one-shot learning results.
To construct f(x|S) and g(xi|S), matching networks18

compute initial embeddings f ′(x) and g′(x) using standard
convolutional neural networks. (Note f ′ and g′ are identical to
the f and g used in the simple one-shot formulation.) The
embedding g(x) is computed by placing all the g′(xi)’s into
a vector, and linking all the elements using a bidirectional
LSTM22,23 (BiLSTM), allowing each g(xi) to be influenced by
all the g′(xj)’s.

| = ′ |···| ′g x S g x g x( ) BiLSTM ([ ( ) ( )])m1

We note that LSTM networks are a form of recurrent neural
network useful for processing sequences of information. In our
application, the support set S can be viewed as a sequence
x1, ...c, xm. The BiLSTM is a modification of the basic LSTM
that partially reduces dependence of the output on the ordering
of the sequence.
To compute embedding f(x|S), matching networks exploit a

context based attention LSTM model24 (attLSTM), which is
entirely order invariant with respect to the sequence. This model
computes an order independent combination of its inputs.

| = ′ |f x S f x g x S( ) attLSTM( ( ), { ( )})i

Internally, the attLSTM contains K layers of processing which
allow for transfer of information among its input. Note that
both the BiLSTM and attLSTM are mechanisms for combining
sequences of vectors into single vectors. However, the attLSTM
is order-independent, while the BiLSTM is order dependent.
The order dependence in the definition of g(x|S) is undesirable
since there is no natural ordering to the elements of the support set.

Furthermore, the treatment of f and g is nonsymmetric. While
g(·|S) depends only on the g′, the definition of f depends on f ′
and the embedding g(·|S).

Iterative Refinement LSTMs. Our proposed architecture
for one-shot learning preserves the context-aware design of
matching networks but resolves the order dependence in the
support-embedding g and the nonsymmetric treatment of the
query and support noted in the previous section (Figure 2).
The core idea is to use an attLSTM to generate both query

embedding f and support embedding g. As noted previously,
the matching networks18 embedding requires the support
embedding g(·|S) to define f(·|S). To resolve this issue, our
architecture iteratively evolves both embeddings simultaneously.
On the first iteration, we define f(x) = f ′(x) and g(S) = g′(S).

Then, we iteratively update the embeddings f and g for L steps
using an attention mechanism. This iteration for L steps is
analogous to the K internal steps within an attLSTM, but with
dual refinement of both support and query (Figure 2). This
construction allows the embedding of the data set to iteratively
inform the embedding of the query. The quantity L will be
referred to as the depth of the IterRefLSTM. The equa-
tions below specify the full update performed over the L
iterations.

∑ ∑

δ δ

δ δ

δ δ δ δ

δ δ

= ′ = =

= ′ + = + ′

= =

= = ′

= =
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Return
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ij ij ij
j

m

ij
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T

(1)

The generated dually evolved embeddings are used to
perform one-shot learning as in the simpler models explained in
previous sections.

Graph Convolutions. We briefly review prior work on
molecular graph convolution and then introduce a pair of new
graph convolutional layers that we find useful for architectural
design.

Previous Work on Molecular Graph Convolution. Earlier
work12 defines a generalized graph convolution layer that
extends standard two-dimensional convolutions upon images to
arbitrary graphs. In standard convolutional networks, an image
can be viewed as a grid, where each node corresponds to
a pixel. The “neighbors” of a pixel in the same receptive field
are passed through a dense neural layer to compute the output
value for the convolution.25 Similarly, when computing the
convolution output for a specific node in an arbitrary graph,
all neighbors of the node are passed through a dense layer to
form the new features at this node. Both convolutions exploit
the “local geometry” of the system to reduce the number
of learnable parameters (see Figure 3 and Appendix). Since
molecules can be viewed as undirected graphs, with atoms as
nodes and bonds as edges, graph convolutional architectures
allow for the learning of complex functions of molecular
structure.
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Graph-convolutional networks are useful for transforming
small molecules into continuous vectorial representations. Such
representations have emerged as a powerful way to manipulate
small molecules within deep networks.26 Earlier work on one-
shot learning uses convolutional neural networks to encode
images into continuous vectors which are then used to make
one-shot predictions. By analogy, we use graph-convolutional
neural networks to encode small-molecules in a form suitable
for one-shot prediction.
New Layers. For the purposes of architectural design,

we found it useful to introduce a pair of graph convolu-
tional layer types, max-pooling and graph-gathering. The max-
pooling operation has been used widely in the broader
convolutional architecture literature,25 and the graph-gather
layer has been used implicitly in previous graph-convolutional
architectures.12

Standard convolutional networks have “pooling layers”,
which perform a max operation upon local receptive fields in
an image.25 In analogy to this pooling operation, we introduce
an analogous max pool operator on a node in graph structured
data that simply returns the maximum activation across the
node and the node’s neighbors (see Figure 3 and Appendix).
Such an operation is useful for increasing the size of down-
stream convolutional layer receptive fields without increasing
the number of parameters.
In a graph-convolutional system, each node has a vector of

descriptors. However, at prediction time, we will require a
single vector descriptor of fixed size for the entire graph.
We introduce a graph-gather convolutional layer which simply
sums all feature vectors for all nodes in the graph to obtain a
graph feature vector (see Figure 3). Note that summing feature
vectors in this fashion has been done in previous architectures,12

but we find that explicitly defining a graph-gather layer is useful
for architectural design.

To facilitate the use of graph-convolutional layers in future
work, we open-source our Tensorflow20 implementation of
graph-convolutions, graph-pooling, and graph-gathering layers
as part of DeepChem.2

Model Training and Evaluation. The objective for the
iterative refinement LSTM models is similar to that for the
matching networks, with the key difference that a set of training
tasks are specified instead of a set of training classes. Note that
this distinction means our work is not a direct extension of
prior work on one-shot learning; rather we seek to demonstrate
that one-shot methods are capable of transferring information
between related, but distinct learning tasks.
Let Tasks represent the set of all learning tasks. We split

this into two disjoint sets, Train−Tasks and Test−Tasks.
LetS represent a support set, and let B represent a batch of
queries.

∑= − |θ∈ − ∼ ∼
∈

E E P y x S[ [ log ( , )]]T S T B T
x y B

Train Tasks ,
( , )

Training consists of a sequence of episodes. In each episode,
a task T is randomly sampled, and then a support S and a batch
of queries B (nonoverlapping) are sampled from the task.
One gradient descent step minimizing , using ADAM27 is
performed for each episode. We experimented with more
gradient descent steps per episode but found that sampling
more supports instead improved performance. The Appendix
contains numerical details of settings used for training.
At test time, the accuracy of a one-shot model is evaluated

separately for each test task in Test−Tasks. For a given test
task, a support of size |S| is sampled at random from data
points for that task. The ROC-AUC score for the model is
evaluated on the remainder of the data points for the test task
(excluding the support). This procedure is reported n times for

Figure 2. Pictorial depiction of iterative refinement of embeddings. Inputs/outputs are two-dimensional for illustrative purposes, with q1 and q2
forming the coordinate axes. Red and blue points depict positive/negative samples (for illustrative purposes only). The original embedding g′(S) is
shown as squares. The expected features r are shown as empty circles.
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each test task (20 times in all experiments reported below), and
the mean and standard deviations of ROC-AUC scores for each
test task are computed.

■ RESULTS AND DISCUSSION
This paper introduces the task of low data learning for drug
discovery and provides an architecture for learning such
models. We demonstrate that this architecture can provide
strong boosts over simpler methods for low-data learning.
On the Tox21 and SIDER collections, one-shot learning
methods strongly dominate simpler machine learning base-
lines. This result is particularly interesting for the SIDER
collection, since this data set consists of very high-level
phenotypic side-effect observations. Given the amount of
uncertainty in these predictions, the fact that one-shot learning

is able to do well is a strong indication that these methods
could offer strong performance on small biological data sets
(for example, perhaps on a small number of drug tests done
with rats).
We note that our work is not simply an application of prior

work on one-shot learning to molecular data sets. The learning
task undertaken by previous one-shot algorithms18 is to
perform object recognition for new classes of images given
only a few examples from each class. For molecules, the
analogous learning challenge would be to learn the behavior of
compounds in a new molecular scaffold, for a fixed experimental
assay, given only a few data points from the new scaffold. Our
results go further and demonstrate that iterative refinement
LSTMs can generalize to new experimental assays, related but
not identical to assays in the training collection. For images,

Figure 3. Graphical representation of the major graph operations described in this paper. For each of the operations, the nodes being operated on
are shown in blue, with unchanged nodes shown in light blue. For graph convolution and graph pool, the operation is shown for a single node, v;
however, these operations are performed on all nodes v in the graph simultaneously.
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the analogous step would be demonstrating that one-shot
methods trained to perform object recognition, can perform,
say, object localization given only limited amounts of data.
Consequently, this work takes a conceptual step forward, showing
that one-shot methods are capable of stronger generalization than
demonstrated previously.
At the same time, it is clear that there are strong limitations

to the generalization powers of current one-shot learning
methods. On the MUV data sets, one-shot learning methods
struggle compared to simple machine-learning baselines. This
result is likely due to the presence of diverse scaffolds in the
MUV collection, suggesting that one-shot learning methods may
struggle to generalize to unseen molecular scaffolds. Further-
more, on the transfer learning experiment, which attempts to
use the Tox21 collection to train SIDER predictors, all one-shot
learning methods collapse entirely. It is clear that there is
a limit to the cross-task generalization capability of one-shot
models, but it is left to future work to determine the precise
limits. Future work might also investigate the structure of the
embeddings learned by the iterative refinement LSTM modules,
to understand how these representations compare to standard
techniques such as circular fingerprints. It might, for example,
be possible to perform one-shot learning purely with circular
fingerprints rather than learned dense embeddings.
In order to facilitate the wide adoption of these models,

we have open-sourced all graph-convolutional primitives in
addition to the iterative refinement LSTM models themselves
as part of the DeepChem library. All scripts used to perform
experiments listed in this paper have been made public as well.
The use of one-shot learning in chemistry can only be

validated experimentally, but we hope that our results will
provide the impetus for such work.

■ EXPERIMENTS

This section reports experimental results for one-shot models
across a number of assay collections.
Tox21. The Tox21 collection consists of 12 nuclear receptor

assays related to human toxicity, first gathered for the Tox21

Data Challenge.28 The winner of this challenge used a multitask
deep-network29 to achieve strong predictive performance.
For a low-data benchmark, we do not use the standard train/

test split for this data set. Instead, we use the first nine assays as
the training set, and the last three assays as the test collection.
For details, see Appendix.
Results are in Table 1. All one-shot learning methods show

strong boosts over the random-forest baseline, with the iterative
refinement LSTM models showing a more robust boost in
the presence of less data. Interestingly, the iterative refinement
LSTM appears to display lower variance due to choice of
support set when compared to other models, demonstrating a
potential benefit of the iterative refinement process. The single-
task graph convolutional baseline performs much worse than all
one-shot models, demonstrating that the strong performance
of one-shot models likely requires architectures that explicitly
promote metric learning.

SIDER. The SIDER data set contains information on
marketed medicines and their observed adverse reactions.30

We originally tested on the original 5868 side effect categories,
but due to lack of signal at this level of granularity we grouped
the drug−SE pairs into 27 system organ classes according to
MedDRA classifications.31 We treat the problem of predicting
whether a given compound induces a side effect as an individual
task (for 27 tasks in total). For the low-data benchmark, all
models were trained on the first 21 tasks and tested on the last
6. For details see Appendix.
Results are in Table 2. The Siamese and IterRefLSTM

methods show strong boosts over the random-forest baseline,
but the AttnLSTM has poor performance on this collection
(comparable to the random forest). The iterative refinement
LSTM models show a robust boost in the presence of less data.
As before, the iterative refinement models tend to have lower
variance. The graph convolutional baseline does poorly, with
performance indistinguishable from random.

MUV. The MUV data set collection32 contains 17 assays
designed to be challenging for standard virtual screening. The
positives examples in these data sets are selected to be struc-
turally distinct from one another. As a result, this collection is a

Table 1. ROC-AUC Scores of Models on Median Held-out Task for Each Model on Tox21a

Tox21 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.586 ± 0.056 0.648 ± 0.029 0.820 ± 0.003 0.801 ± 0.001 0.823 ± 0.002
5+/10− 0.573 ± 0.060 0.637 ± 0.061 0.823 ± 0.004 0.753 ± 0.173 0.830 ± 0.001
1+/10− 0.551 ± 0.067 0.541 ± 0.093 0.726 ± 0.173 0.549 ± 0.088 0.724 ± 0.008
1+/5− 0.559 ± 0.063 0.595 ± 0.086 0.687 ± 0.210 0.593 ± 0.153 0.795 ± 0.005
1+/1− 0.535 ± 0.056 0.589 ± 0.068 0.657 ± 0.222 0.507 ± 0.079 0.827 ± 0.001

aNumbers reported are means and standard deviations. Randomness is over the choice of support set; experiment is repeated with 20 support sets.
The Appendix contains results for all held-out Tox21 tasks. The result with highest mean in each row is highlighted. The notation 10+/10− indicates
supports with 10 positive examples and 10 negative examples.

Table 2. ROC-AUC Scores of Models on Median Held-out Task for Each Model on SIDERa

SIDER RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.535 ± 0.036 0.483 ± 0.026 0.687 ± 0.089 0.553 ± 0.058 0.669 ± 0.007
5+/10− 0.533 ± 0.030 0.473 ± 0.029 0.648 ± 0.070 0.534 ± 0.053 0.704 ± 0.002
1+/10− 0.540 ± 0.034 0.447 ± 0.016 0.544 ± 0.056 0.506 ± 0.016 0.556 ± 0.011
1+/5− 0.529 ± 0.028 0.457 ± 0.029 0.530 ± 0.050 0.505 ± 0.022 0.644 ± 0.012
1+/1− 0.506 ± 0.039 0.468 ± 0.045 0.510 ± 0.016 0.501 ± 0.022 0.697 ± 0.002

aNumbers reported are means and standard deviations. Randomness is over the choice of support set; experiment is repeated with 20 support sets.
The Appendix contains results for all held-out SIDER tasks. The result with highest mean in each row is highlighted. The notation 10+/10−
indicates supports with 10 positive examples and 10 negative examples.
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best-case scenario for baseline machine learning (since each
data point is maximally informative) and a worst-case test
for the low-data methods, since structural similarity cannot
be effectively exploited to predict behavior of new active
compounds.
Results are in Table 3. The random forest baseline does

significantly better for MUV than for the other two datsets
we tested. All one-shot models struggle on this collection.
The graph-convolutional baseline struggles on MUV as well,
suggesting that part of the difficulty of MUV may be due to
current limitations of graph convolutions. That said, these
results suggest that one-shot learning methods may have some
difficulties generalizing to new molecular scaffolds.
Transfer Learning to SIDER from Tox21. The experi-

ments thus far have tested the ability of one-shot learning
methods to generalize from training tasks to closely related
testing tasks. To test whether one-shot learning methods are
capable of broader generalization, we trained models on the
Tox21 data set collection and evaluated predictive accuracy on
the SIDER collection. Note that these collections are broadly
distinct, with Tox21 measuring results in nuclear receptor assays,
and SIDER measuring adverse reactions from real patients.
Results are in Table 4. None of our models achieve any

predictive power on this task, providing evidence that the one-
shot models have limited generalization powers to unrelated
systems.

■ APPENDIX

Definitions of Graph Primitives
There are three major neural-network layers that are used to
featurizing the molecular graphs. This is the graph convolution,
hconv(G), the graph pool, hpool(G), and the graph gather,
hgather(G), all defined below. The graph convolution and graph
pool operations definitions are given for a single node in the
graph v ∈ V; however, when performing the operation on the
graph, G, the operation is performed on all nodes simulta-
neously. This means that hconv(G) = [hconv(v1), hconv(v2), ...],
and similarly for the pool layer. Specifically, we define

∑

∑

σ= + +

=

=

∈

∈

∈

h v W v U u b

h v u v

h G u

( ) ( )

( ) max{ max , }

( )

u v E

v v v

u v E

u V

conv
( , )

deg( ) deg( ) deg( )

pool
( , )

gather

where σ(·) is a nonlinearity, such as ReLU or tanh.
Convolutional Architecture in this Paper. The Graph Conv,

Siamese, AttnLSTM, and IterRefLSTM models all used the
same convolutional architecture, shown in the table below, with
the input starting at the left, sequentially feeding into the layers
to the right.
We note that we did not make a focused effort at hyper-

parameter optimization in this work. Once we found the basic
architecture below (by analogy with image convolutional
networks), we proceeded with experimental evaluation. We
leave thorough hyperparameter optimization to future work.

Iterative Refinement LSTM Architecture in This Paper. The
IterRefLSTM model and AttnLSTM model both use cosine
similarity functions, = ∥∥ ∥·

∥k x y x y( , ) x y
. All LSTMs used in

this paper have an tanh activation and hard sigmoid inner
activation.

Molecular Features. For the convolutional models, all
molecules were featurized into graphs by considering atoms
as nodes and bonds as edges in an undirected graph. No
distinction was made between bond types. RDKit33 was used to
compute basic features of atoms including atom-type, valences,
formal charges, and hybridization for each atom in a given
molecule. This set of features formed the initial set of atomic
features fed into graph-convolutional layers.

Details of Model Training. This section provides further
information on model training procedures. All code for this
paper is open-sourced, so we refer interested readers to the
actual code within DeepChem for exact implementation details.

One-Shot Models. When training a model on a data set
collection, assays within that collection are split into training
assays and testing assays. For Tox21, 9 assays are reserved for
training, 3 for testing. For SIDER, 21 assays are reserved for
training, and 6 for testing. For MUV, 12 assays are reserved for
training, and 5 models are reserved for testing. See following
Appendix sections for listings of training/testing assays for each
collection.

Table 3. ROC-AUC Scores of Models on Median Held-out Task for Each Model on MUVa

MUV RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.754 ± 0.064 0.568 ± 0.085 0.601 ± 0.041 0.504 ± 0.058 0.499 ± 0.053
5+/10− 0.730 ± 0.063 0.565 ± 0.068 0.655 ± 0.166 0.507 ± 0.052 0.663 ± 0.019
1+/10− 0.556 ± 0.084 0.569 ± 0.061 0.602 ± 0.118 0.504 ± 0.044 0.569 ± 0.012
1+/5− 0.598 ± 0.067 0.554 ± 0.089 0.514 ± 0.053 0.515 ± 0.021 0.632 ± 0.011
1+/1− 0.559 ± 0.095 0.552 ± 0.084 0.500 ± 0.0001 0.500 ± 0.027 0.479 ± 0.037

aNumbers reported are means and standard deviations. Randomness is over the choice of support set; experiment is repeated with 20 support sets.
The Appendix contains results for all held-out MUV tasks. The result with highest mean in each row is highlighted. The notation 10+/10− indicates
supports with 10 positive examples and 10 negative examples.

Table 4. ROC-AUC Scores of Models Trained on Tox21 on
Median SIDER Task for Each Model on SIDERa

SIDER from Tox21 Siamese AttnLSTM IterRefLSTM

10+/10− 0.511 ± 0.031 0.509 ± 0.014 0.509 ± 0.012
aNote that models are evaluated on all SIDER tasks and not just the
held-out SIDER tasks from previous section. Numbers reported are
means and standard deviations. Randomness is over the choice of
support set; experiment is repeated with 20 support sets. The result
with highest mean in each row is highlighted. The notation 10+/10-
indicates supports with 10 positive examples and 10 negative examples.

Table 5. Convolutional Network Architecture

layer conv pool conv pool conv pool dense gather

dimension 64 128 64 128
nonlinarity relu relu relu tanh tanh
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As mentioned previously, training for one-shot models
consists of a sequence of episodes. In each episode, an assay
from the training assays is randomly sampled, and then a
support S of size npos + nneg and a batch of queries B (of size
128) are sampled from the task. In the experimental tables, we
use short-hand 10+/10− or 1+/5− to respectively represent
npos = 10, nneg = 10 and npos = 1, nneg = 5. Models were trained
for 2000·ntrain episodes, where ntrain was the number of training
assays for that data set collection. Each episode takes one
gradient descent step minimizing , using ADAM.27

At test time, the accuracy of a one-shot model is evaluated
separately on each testing assay. For a given test assay, a
support of size npos + nneg is sampled at random from data
points for that assay. The ROC-AUC score for the one-shot
model is evaluated on the remainder of the data points for the
test assay (excluding the support). This procedure is reported
20 times for each test assay, and the mean and standard
deviations of computed ROC-AUC scores for each test assay
are presented in the tables in the Appendix. For the tables in
the body of the paper, the mean and standard deviations of
computed ROC-AUC scores is only presented for the “median
task”. That is, for the test assay whose mean ROC-AUC score
(over sampled supports) is the median of the set of mean
ROC-AUC scores (over all test assays).
Singletask Models. Random forests were trained on circular

fingerprint representations of input molecules.14 For each test
assay, supports of size npos + nneg are sampled at random. The
random forest model is trained on this sampled supported set

and evaluated on the remainder of test assay. This procedure is
repeated 20 times (note that a different random forest is trained
for each newly sampled support). Means and standard
deviations are reported as for one-shot models.
Singletask graph convolutional networks are trained as the

random forests are, but with graph convolutional features
instead of circular fingerprint representations.

Tox21 Details. Assay Details. The assays NR-AR, NR-AR-
LBD, NR-AhR, NR-Aromatase, NR-ER, NR-ER-LBD, NR-
PPAR-gamma, SR-ARE, SR-ATAD5 were used for training.
Assays SR-HSE, SR-MMP, and SR-p53 were used for model
evaluation.

Per-Assay Results. Results for each held-out assay are
reported in Tables 6, 7, and 8.

SIDER Details. Assay Details. Indications “Hepatobiliary
disorders”, “Metabolism and nutrition disorders”, “Product
issues”, “Eye disorders”, “Investigations,Musculoskeletal and
connective tissue disorders”, “Gastrointestinal disorders”,
“Social circumstances”, “Immune system disorders”, “Repro-
ductive system and breast disorders”, “Neoplasms benign,
malignant and unspecified (incl cysts and polyps)”, “General
disorders and administration site conditions”, “Endocrine
disorders”, “Surgical and medical procedures”, “Vascular
disorders”, “Blood and lymphatic system disorders”, “Skin
and subcutaneous tissue disorders”, “Congenital, familial and
genetic disorders”, “Infections and infestations”,“Respiratory,
thoracic and mediastinal disorders”, “Psychiatric disorders”
were used for training. Indications “Renal and urinary

Table 6. ROC-AUC Scores of Models on Tox21 Assay SR-HSEa

SR-HSE RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.532 ± 0.033 0.540 ± 0.025 0.767 ± 0.005 0.747 ± 0.003 0.772 ± 0.002
5+/10− 0.521 ± 0.037 0.546 ± 0.023 0.733 ± 0.098 0.716 ± 0.098 0.771 ± 0.002
1+/10− 0.525 ± 0.033 0.531 ± 0.035 0.647 ± 0.202 0.498 ± 0.046 0.671 ± 0.007
1+/5− 0.510 ± 0.041 0.537 ± 0.043 0.680 ± 0.167 0.505 ± 0.074 0.729 ± 0.003
1+/1− 0.507 ± 0.039 0.526 ± 0.0378 0.613 ± 0.187 0.507 ± 0.029 0.767 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 7. ROC-AUC Scores of Models on Tox21 Assay SR-MMPa

SR-MMP RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.629 ± 0.058 0.648 ± 0.029 0.825 ± 0.006 0.801 ± 0.001 0.838 ± 0.001
5+/10− 0.634 ± 0.079 0.637 ± 0.061 0.846 ± 0.028 0.811 ± 0.003 0.847 ± 0.001
1+/10− 0.587 ± 0.068 0.541 ± 0.093 0.809 ± 0.020 0.551 ± 0.086 0.730 ± 0.003
1+/5− 0.597 ± 0.097 0.595 ± 0.086 0.687 ± 0.210 0.602 ± 0.122 0.799 ± 0.002
1+/1− 0.560 ± 0.0844 0.589 ± 0.068 0.657 ± 0.222 0.527 ± 0.090 0.835 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 8. ROC-AUC Scores of Models on Tox21 Assay SR-p53a

SR-p53 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.586 ± 0.056 0.653 ± 0.021 0.820 ± 0.003 0.809 ± 0.002 0.823 ± 0.002
5+/10− 0.573 ± 0.0604 0.639 ± 0.042 0.823 ± 0.004 0.753 ± 0.173 0.830 ± 0.001
1+/10− 0.551 ± 0.067 0.597 ± 0.083 0.726 ± 0.173 0.549 ± 0.088 0.724 ± 0.008
1+/5− 0.559 ± 0.063 0.595 ± 0.073 0.745 ± 0.156 0.593 ± 0.153 0.795 ± 0.005
1+/1− 0.535 ± 0.056 0.591 ± 0.084 0.680 ± 0.197 0.507 ± 0.079 0.827 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00367
ACS Cent. Sci. 2017, 3, 283−293

290

http://dx.doi.org/10.1021/acscentsci.6b00367


disorders”, “Pregnancy, puerperium and perinatal conditions”,
“Ear and labyrinth disorders”, “Cardiac disorders”, “Nervous
system disorders”, “Injury, poisoning and procedural complica-
tions” were used for model evaluation.

Per-Assay Results. Results for each held-out assay in SIDER
collection are reported in Tables 9, 10, 11, 12, 13, and 14.

MUV Details. Assay Details. Assays MUV-466, MUV-548,
MUV-600, MUV-644, MUV-652, MUV-689, MUV-692,

Table 9. ROC-AUC Scores of Models on “Renal and Urinary Disorders”a

R.U.D. RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.564 ± 0.031 0.496 ± 0.035 0.729 ± 0.049 0.576 ± 0.081 0.706 ± 0.002
5+/10− 0.564 ± 0.022 0.477 ± 0.031 0.670 ± 0.119 0.540 ± 0.026 0.710 ± 0.002
1+/10− 0.540 ± 0.034 0.449 ± 0.025 0.578 ± 0.047 0.518 ± 0.025 0.575 ± 0.015
1+/5− 0.538 ± 0.045 0.457 ± 0.029 0.518 ± 0.060 0.509 ± 0.026 0.681 ± 0.010
1+/1− 0.508 ± 0.046 0.468 ± 0.045 0.503 ± 0.063 0.497 ± 0.022 0.728 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10- indicates supports with 10 positive examples and
10 negative examples.

Table 10. ROC-AUC Scores of Models on “Pregnancy, Puerperium and Perinatal Conditions”a

P.P.P.C. RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.515 ± 0.034 0.552 ± 0.028 0.694 ± 0.012 0.505 ± 0.018 0.669 ± 0.007
5+/10− 0.517 ± 0.050 0.548 ± 0.032 0.645 ± 0.073 0.545 ± 0.041 0.714 ± 0.004
1+/10− 0.529 ± 0.043 0.521 ± 0.041 0.541 ± 0.038 0.505 ± 0.026 0.539 ± 0.018
1+/5− 0.507 ± 0.044 0.538 ± 0.030 0.511 ± 0.032 0.505 ± 0.022 0.640 ± 0.011
1+/1− 0.504 ± 0.032 0.527 ± 0.027 0.510 ± 0.016 0.493 ± 0.016 0.697 ± 0.002

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 11. ROC-AUC Scores of Models on “Ear and Labyrinth Disorders”a

E.L.D. RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.527 ± 0.034 0.533 ± 0.026 0.676 ± 0.077 0.559 ± 0.070 0.661 ± 0.001
5+/10− 0.518 ± 0.038 0.486 ± 0.032 0.648 ± 0.070 0.528 ± 0.047 0.680 ± 0.001
1+/10− 0.524 ± 0.021 0.456 ± 0.018 0.547 ± 0.037 0.506 ± 0.016 0.558 ± 0.011
1+/5− 0.526 ± 0.031 0.463 ± 0.027 0.534 ± 0.064 0.504 ± 0.021 0.639 ± 0.008
1+/1− 0.509 ± 0.032 0.519 ± 0.035 0.514 ± 0.059 0.501 ± 0.022 0.689 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 12. ROC-AUC Scores of Models on “Cardiac Disorders”a

C.D. RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.552 ± 0.036 0.456 ± 0.038 0.687 ± 0.089 0.532 ± 0.076 0.691 ± 0.002
5+/10− 0.560 ± 0.041 0.444 ± 0.027 0.678 ± 0.085 0.534 ± 0.053 0.704 ± 0.002
1+/10− 0.540 ± 0.029 0.422 ± 0.035 0.544 ± 0.056 0.504 ± 0.016 0.555 ± 0.012
1+/5− 0.537 ± 0.052 0.447 ± 0.035 0.536 ± 0.052 0.517 ± 0.045 0.674 ± 0.005
1+/1− 0.506 ± 0.039 0.461 ± 0.0478 0.543 ± 0.068 0.509 ± 0.029 0.704 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 13. ROC-AUC Scores of Models on “Nervous System Disorders”a

N.S.D. RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.681 ± 0.077 0.367 ± 0.040 0.809 ± 0.013 0.657 ± 0.119 0.784 ± 0.006
5+/10− 0.638 ± 0.102 0.360 ± 0.035 0.791 ± 0.022 0.637 ± 0.078 0.803 ± 0.007
1+/10− 0.639 ± 0.043 0.334 ± 0.025 0.631 ± 0.115 0.511 ± 0.057 0.667 ± 0.021
1+/5− 0.604 ± 0.091 0.344 ± 0.033 0.617 ± 0.107 0.514 ± 0.080 0.775 ± 0.011
1+/1− 0.598 ± 0.100 0.437 ± 0.095 0.515 ± 0.121 0.508 ± 0.060 0.797 ± 0.002

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.
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Table 14. ROC-AUC Scores of Models on “Injury, Poisoning and Procedural Complications”a

I.S.P.C. RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.535 ± 0.036 0.483 ± 0.026 0.671 ± 0.089 0.553 ± 0.058 0.667 ± 0.001
5+/10− 0.533 ± 0.0302 0.473 ± 0.029 0.589 ± 0.125 0.509 ± 0.036 0.688 ± 0.002
1+/10− 0.541 ± 0.021 0.447 ± 0.016 0.537 ± 0.045 0.510 ± 0.015 0.556 ± 0.011
1+/5− 0.529 ± 0.028 0.458 ± 0.024 0.530 ± 0.050 0.501 ± 0.021 0.644 ± 0.012
1+/1− 0.477 ± 0.029 0.475 ± 0.023 0.501 ± 0.044 0.504 ± 0.019 0.689 ± 0.001

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 15. ROC-AUC Scores of Models on MUV-832a

MUV-832 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.805 ± 0.0547 0.568 ± 0.0851 0.655 ± 0.066 0.484 ± 0.058 0.500 ± 0.053
5+/10− 0.730 ± 0.063 0.565 ± 0.068 0.656 ± 0.136 0.517 ± 0.045 0.726 ± 0.025
1+/10− 0.556 ± 0.084 0.569 ± 0.061 0.610 ± 0.144 0.511 ± 0.042 0.573 ± 0.013
1+/5− 0.598 ± 0.067 0.573 ± 0.082 0.511 ± 0.179 0.529 ± 0.052 0.670 ± 0.014
1+/1− 0.559 ± 0.095 0.552 ± 0.084 0.500 ± 0.001 0.497 ± 0.030 0.463 ± 0.024

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 16. ROC-AUC Scores of Models on MUV-846a

MUV-846 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.820 ± 0.051 0.608 ± 0.079 0.601 ± 0.041 0.504 ± 0.058 0.460 ± 0.054
5+/10− 0.788 ± 0.061 0.595 ± 0.063 0.655 ± 0.166 0.494 ± 0.040 0.663 ± 0.019
1+/10− 0.700 ± 0.094 0.576 ± 0.075 0.602 ± 0.118 0.504 ± 0.045 0.598 ± 0.013
1+/5− 0.698 ± 0.106 0.554 ± 0.089 0.562 ± 0.149 0.517 ± 0.059 0.632 ± 0.011
1+/1− 0.646 ± 0.080 0.588 ± 0.077 0.500 ± 0.0001 0.496 ± 0.015 0.511 ± 0.029

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 17. ROC-AUC Scores of Models on MUV-852a

MUV-852 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.754 ± 0.064 0.657 ± 0.103 0.678 ± 0.047 0.514 ± 0.049 0.514 ± 0.048
5+/10− 0.775 ± 0.047 0.670 ± 0.068 0.765 ± 0.017 0.495 ± 0.046 0.755 ± 0.023
1+/10− 0.631 ± 0.105 0.627 ± 0.156 0.737 ± 0.097 0.574 ± 0.053 0.569 ± 0.012
1+/5− 0.632 ± 0.106 0.597 ± 0.135 0.663 ± 0.109 0.485 ± 0.022 0.727 ± 0.008
1+/1− 0.590 ± 0.134 0.614 ± 0.133 0.500 ± 0.002 0.502 ± 0.032 0.471 ± 0.032

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 18. ROC-AUC Scores of Models on MUV-858a

MUV-858 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.565 ± 0.073 0.552 ± 0.083 0.550 ± 0.143 0.516 ± 0.053 0.530 ± 0.044
5+/10− 0.564 ± 0.072 0.554 ± 0.069 0.580 ± 0.105 0.548 ± 0.051 0.629 ± 0.023
1+/10− 0.537 ± 0.089 0.552 ± 0.069 0.553 ± 0.101 0.492 ± 0.032 0.567 ± 0.014
1+/5− 0.577 ± 0.068 0.526 ± 0.050 0.486 ± 0.082 0.506 ± 0.028 0.613 ± 0.009
1+/1− 0.526 ± 0.070 0.527 ± 0.060 0.500 ± 0.009 0.500 ± 0.027 0.503 ± 0.041

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. The model with highest mean in each row is highlighted. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.

Table 19. ROC-AUC Scores of Models on MUV-859a

MUV-859 RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM

10+/10− 0.503 ± 0.0717 0.534 ± 0.084 0.514 ± 0.054 0.498 ± 0.098 0.474 ± 0.059
5+/10− 0.502 ± 0.068 0.510 ± 0.067 0.498 ± 0.051 0.507 ± 0.052 0.386 ± 0.017
1+/10− 0.530 ± 0.053 0.511 ± 0.049 0.507 ± 0.062 0.497 ± 0.076 0.412 ± 0.010
1+/5− 0.515 ± 0.074 0.513 ± 0.042 0.514 ± 0.053 0.515 ± 0.021 0.397 ± 0.010
1+/1− 0.521 ± 0.060 0.493 ± 0.065 0.500 ± 0.001 0.502 ± 0.044 0.479 ± 0.037

aNumbers reported are means and standard deviations. Each model is evaluated 20 times with different support sets to compute means and standard
deviations. No models had signal so did not highlight any models. The notation 10+/10− indicates supports with 10 positive examples and
10 negative examples.
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MUV-712, MUV-713, MUV-733, MUV-737, MUV-810 were
used for training. Assays MUV-832, MUV-846, MUV-852,
MUV-858, MUV-859 were used for model evaluation.
Per-Assay Results. Results for each held-out assay in MUV

collection are reported in Tables 15, 16, 17, 18, and 19.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: pande@stanford.edu.
ORCID
Bharath Ramsundar: 0000-0001-8450-4262
Author Contributions
#H.A.-T. and B.R. made an equal contribution.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We would like to thank the Stanford Computing Resources for
providing us with access to the Sherlock and Xstream GPU
clusters. Thanks to David Duvenaud for useful preliminary
discussions. B.R. was supported by the Fannie and John Hertz
Foundation.

■ REFERENCES
(1) Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep
neural nets as a method for quantitative structure-activity relationships.
J. Chem. Inf. Model. 2015, 55, 263−274.
(2) Ramsundar, B. deepchem.io. https://github.com/deepchem/
deepchem, 2016.
(3) Waring, M. J.; Arrowsmith, J.; Leach, A. R.; Leeson, P. D.;
Mandrell, S.; Owen, R. M.; Pairaudeau, G.; Pennie, W. D.; Pickett, S.
D.; Wang, J.; Wallace, O.; Weir, A. An analysis of the attrition of drug
candidates from four major pharmaceutical companies. Nat. Rev. Drug
Discovery 2015, 14, 475−486.
(4) Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Fei-
Fei, L. ImageNet Large Scale Visual Recognition Challenge. Int. J.
Comp. Vis (IJCV) 2015, 115, 211−252.
(5) Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural
network learning for speech recognition and related applications: An
overview. Int. Conf. Acous. Speech Signal Proc. 2013, 8599−8603.
(6) Wu, Y. et al. Googles Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. arXiv
preprint arXiv:1609.08144, 2016.
(7) Silver, D.; et al. Mastering the game of Go with deep neural
networks and tree search. Nature 2016, 529, 484−489.
(8) Dahl, G. Deep Learning How I Did It: Merck 1st place interview.
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-
merck-1st-place-interview/, November 1, 2012.
(9) Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding,
D.; Pande, V. Massively multitask networks for drug discovery. arXiv
preprint arXiv:1502.02072, 2015.
(10) Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner,
J. K.; Ceulemans, H.; Hochreiter, S. Deep Learning as an Opportunity
in Virtual Screening. Neural Inf. Proc. Sys. DL Workshop (NIPS DL
Workshop) 2014, 27.
(11) Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep
learning in chemoinformatics: the prediction of aqueous solubility for
drug-like molecules. J. Chem. Inf. Model. 2013, 53, 1563−1575.
(12) Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.;
Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional networks on
graphs for learning molecular fingerprints. Neural Inf. Proc. Sys. (NIPS)
2015, 2224−2232.
(13) Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P.
Molecular Graph Convolutions: Moving Beyond Fingerprints. J.
Comput.-Aided Mol. Des. 2016, 30, 595−608.

(14) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(15) Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A.
Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using
Ligand Based Approaches. J. Chem. Inf. Model. 2016, 56, 1936−1949.
(16) Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Human-level
concept learning through probabilistic program induction. Science
2015, 350, 1332−1338.
(17) Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap,
T. One-shot Learning with Memory-Augmented Neural Networks.
arXiv preprint arXiv:1605.06065, 2016.
(18) Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra,
D. Matching Net- works for One Shot Learning. Advances in Neural
Information Processing Systems, 2016, pp 3630−3638.
(19) He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep
Residual Networks. European Conference on Computer Vision, 2016,
pp 630−645.
(20) Abadi, M. et al. TensorFlow: A system for large-scale machine
learning. Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Savannah, Georgia,
USA, 2016, pp 265−283.
(21) Koch, G. Siamese neural networks for one-shot image
recognition. Ph.D. thesis, University of Toronto, 2015.
(22) Hochreiter, S.; Schmidhuber, J. Long short-term memory.
Neural Comp 1997, 9, 1735−1780.
(23) Graves, A.; Jaitly, N.; Mohamed, A.-r. Hybrid speech recognition
with deep bidirec- tional LSTM. Aut. Speech Rec. Und. (ASRU) 2013,
273−278.
(24) Vinyals, O.; Bengio, S.; Kudlur, M. Order matters: Sequence to
sequence for sets. arXiv preprint arXiv:1511.06391, 2015.
(25) Convolutional Neural Networks. http://cs231n.github.io/
convolutional-networks/, Accessed: 2016-11-06.
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